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Abstract—This paper outlines reduced-order models for
grid-forming virtual-oscillator-controlled inverters with nested
current- and voltage-control loops, and current-limiting action
for over-current protection. While a variety of model-reduction
methods have been proposed to tame complexity in inverter
models, previous efforts have not included the impact of current-
reference limiting. In addition to acknowledging the current-
limiting action, the reduced-order models we outline are tailored
to networks with resistive and inductive interconnecting lines.
Our analytical approach is centered on a smooth function
approximation for the current-reference limiter, participation
factor analysis to identify slow- and fast-varying states, and
singular perturbation to systematically eliminate the fast states.
Computational benefits and accuracy of the reduced-order mod-
els are benchmarked via numerical simulations that compare
them to higher-order averaged and switched models.

I. INTRODUCTION

THEincreasing deployment of inverter-based resources has
altered the dynamic characteristics of electric grids. In

this context, there has been significant attention, in recent
years, on replacing synchronous power generators with grid-
forming (GFM) inverter-based counterparts which, in the ab-
sence of synchronous generators, can sustain system voltages
and frequency [1], [2]. Examples of such GFM control strate-
gies include droop [3]–[5], virtual synchronous machines [6]–
[10], and virtual oscillator control (VOC) [11]–[25].

Motivated by the fact that the VOC strategy is a globally
stabilizing control strategy that is able to deal with higher-
order harmonics [26], this paper leverages the theory of
singular perturbation [27] to outline reduced-order models
for a recently proposed variant of VOC called dispatchable
virtual oscillator control (dVOC). The controller leverages the
nonlinear dynamics of the Andronov-Hopf oscillator (AHO)
to facilitate synchronization in low-inertia settings, and it
also features functionality to respond to power and voltage
setpoints [16]–[25]. A schematic representation of the three-
phase GFM inverter we examine is sketched in Fig. 1. The
constituent subsystems in the model include: i) the dVOC
module that generates voltage and frequency setpoints; ii) an
LCL filter; iii) a proportional-integral current controller with a
current-reference limiter; and iv) a proportional-integral volt-
age controller that includes integrator anti-windup control.1

Two challenges immediately surface when considering the

1The structure depicted in Fig. 1 (nested voltage- and current-control
loops and current-reference limiting) applies universally to GFM inverters.
Distinguishing attributes are introduced by the outermost controller that
determines voltage and frequency setpoints. In this work, we assume the
outermost controller is implemented via dVOC.

prospect of leveraging such models for system-level analy-
sis. First, such models have multiple dynamic states (12 in
this particular instance) which presents significant challenges
to modeling dynamics of large networks of such inverters
with limited computational burden. Second, the nonlinear
elements sprinkled throughout the models (stemming from
reference-frame transformations, current-reference limits, non-
linear GFM control strategies) present a non-trivial analytical
impediment. Notably, these challenges hold true for a broad
class of GFM inverter control methods going beyond the
dVOC implementation we focus on.

Our main contribution is the development of reduced-order
models for the dVOC flavor of GFM inverters that systemat-
ically acknowledge all pertinent nonlinearities in the model,
particularly, the impact of the current-reference limiter. The
current-reference limiter is a key element in the overall control
scheme for GFM inverters since it addresses over-currents that
would appear otherwise during faults and voltage sags [28]–
[30]. It is typically realized with saturation functions that are
incompatible with analytical approaches for model reduction.
We circumvent this challenge with a smooth-function approxi-
mation that carries through the analytical developments. While
reduced-order models have been proposed for GFM inverters
(we review prior art shortly), to the best of our knowledge,
these do not acknowledge current-reference limiters.

A majority of related literature in model reduction for
GFM inverters is centered on droop control [31]–[35]. This is
understandable since droop control is one of the earliest pro-
posed GFM control strategies. There are recent efforts—albeit
significantly fewer—focused on model reduction for other
GFM controls, including virtual synchronous machines [36]
and VOC [37]. These prior efforts have not considered the
impact of the current-reference limiter in deriving reduced-
order models. This singular aspect underscores the main con-
tribution of our effort. Furthermore, we utilize participation-
factor analysis to tease out distinct reduced-order models for
dominantly resistive and dominantly inductive interconnecting
lines. Such a systematic classification is particularly relevant,
since it is well recognized that line attributes have non-trivial
impact on system dynamics in low-inertia settings [18].

The remainder of this paper is organized as follows. Pre-
liminaries are discussed in Section II, the full-order model is
overviewed in Section III, and reduced-order models are de-
rived in Section IV. Numerical results comparing the reduced-
order models with full-order averaged and switched models are
presented in Section V, and concluding remarks are given in
Section VI.
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Fig. 1: Schematic representation of the GFM inverter per-unit dynamical model with dVOC.

II. PRELIMINARIES

A. Reference-frame Transformations & Notation

Consider the three-phase signal fabc = [fa , fb , fc]
>, where

fa, fb, and fc form a balanced three-phase set. Let ωb and ω(t)
denote the nominal angular frequency and the GFM inverter’s
angular frequency, in rad s−1, respectively, and define

θ(t) =

∫ t

0

ω(τ) dτ + θ(0), δ(t) = θ(t)− ωbt. (1)

Let fDQ = [fD , fQ]> and fdq = [fd , fq]
> denote trans-

formations of fabc to reference frames rotating at angular
frequencies ωb and ω(t), respectively. We define the DQ and
dq transformations of fabc as follows:

fDQ = T1(ωbt)fabc, fdq = T1(θ)fabc, (2)

where transformation matrix T1(·) is defined as:

T1(α) =
2

3

[
cosα cos(α− 2π

3 ) cos(α+ 2π
3 )

− sinα − sin(α− 2π
3 ) − sin(α+ 2π

3 )

]
. (3)

Signals in the DQ and dq reference frames are related via

fdq = T2(δ)fDQ, (4)

where rotation matrix T2(·) is defined as

T2(α) =

[
cosα sinα
− sinα cosα

]
. (5)

The 2 × 2 identity matrix is denoted by I; e1 = [1 , 0]> and
e2 = [0 , 1]> are the standard basis vectors.

B. Participation Factors

For the linear system ẋ = Ax, where A ∈ Rn×n, x ∈ Rn,
let rij and lij denote the i-th entries of the right and left
eigenvectors associated with the j-th eigenvalue of A, respec-
tively. The participation of the i-th element of x in the j-th
eigenvalue of A is quantified by

|rij ||lij |∑n
i=1 |rij ||lij |

, (6)

and is called the participation factor [38]. Hereafter, partici-
pation factors are normalized using their maximum values.

III. AVERAGED FULL-ORDER GFM INVERTER MODEL

In this section, we present the averaged full-order dynamical
model for GFM inverters covering all control- and physical-
layer subsystems. In subsequent developments, we use per-
unit normalization (see, e.g., [39]) with the rated three-phase
power, Sr, rated line-to-line voltage (RMS), Er, and nominal
system frequency, ωb, serving as base quantities for power,
voltage, and frequency, respectively. This facilitates a unified
and systematically normalized transcription of all parameters
and variables in the dynamic models.

Table I summarizes numerical per-unit values for all the
controller and filter parameters adopted in this work, with
respective expressions for their base quantities enumerated.
Controller and filter parameters are designed assuming Sr =
1500 VA, Er = 208 V, ωb = 2π60 rad s−1, and a switching
frequency of 10 kHz. We discuss the design choices of perti-
nent parameters alongside the overview of each subsystem.

A. The Dispatchable Virtual Oscillator Controller

Let P and Q denote the active- and reactive-power delivered
to the grid at the filter-capacitance terminals, and define S =
[P,Q]>. Furthermore, let E?, P ?, and Q? denote references
for the voltage magnitude, active power, and reactive power,
respectively, and define S? = [P ?, Q?]>. Following from
the definitions of θ and ω in Section II-A, the dynamics of
frequency and voltage-magnitude references are

θ̇ = ω = ωb +
ωbκ1
(E?)2

e>1 T2(ψ − π
2 )(S? − S), (7a)

Ė?=
ωbκ1
E?

e>2 T2(ψ − π
2 )(S? − S)

+ ωbκ2(E2
b − (E?)2)E?, (7b)

where Eb denotes the nominal inverter voltage magnitude, κ1
is the synchronization gain, and κ2 is the voltage-amplitude
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TABLE I: Model Parameters and Base Values.

Symbol Description Value Unit Base value Base unit

ψ rotation angle π
4

rad
N/A N/A

ε
saturation-function

0.1 N/Aparameter

Eb
nominal voltage

1 pu Er
√

2√
3

Vmagnitude (peak)

Imax
peak current

1.2 pu Sr
√
2

Er
√

3
Alimit

Li
inverter-side

0.0196 pu

E2
r

Srωb
H

inductance

Lg

grid-side
0.0196 puinductance

grid-side + line
0.037 puinductance

C
filter

0.1086 pu Sr
E2

rωb
Fcapacitance

Ri
inverter-side

0.0139 pu

E2
r
Sr

Ω

resistance

Rg

grid-side
0.0139 puresistance

grid-side + line
0.0313 puresistance

Kb
anti-windup

0.0347 pugain

KPi
proportional

0.9817 pugain

KIi integral gain 0.6944 pu
E2

rωb

Sr
F−1

κ1
synchronization

0.0033 pugain

KPv
proportional

1.4476 pu Sr
E2

r
Ω−1

gain

KIv integral gain 10.2944 pu Srωb
E2

r
H−1

ωbw,i
current-loop

50 pu
ωb rad s−1bandwidth

ωbw,v
voltage-loop

13.3333 pubandwidth

κ2
voltage-amplitude

0.0796 pu 3ωb
2E2

r
rad s−1 V−2

control gain

control gain. Furthermore, ψ ∈ [0, 2π) denotes the rotation
angle of the controller, which is typically tuned based on
the R

X ratio of interconnecting lines. For instance, ψ = π
2

is well suited for inductive transmission lines since it yields
active power-frequency and reactive power-voltage droop in
steady state [16]. The model (7a)–(7b) is built from cycle-
averaged dynamics of the Andronov-Hopf oscillator in polar
coordinates.2

Rationale for choice of κ1, κ2, and ψ: Numerical values
for κ1 and κ2 listed in Table I ensure that the output voltage
and frequency are approximately 0.95 pu and 59.5 Hz, respec-
tively, when S = [1, 1]> (full load) and S? = [0, 0]>. In this
context, the output voltage and frequency will return to their
nominal values when we set S? = [1, 1]> (see [16], [25] for
details). The choice of rotation angle ψ = π

4 ensures a level of
generality by preserving cross-coupling between active power,
reactive power, frequency, and voltage.

2The dynamical model for the unforced Andronov-Hopf oscillator in
polar coordinates takes the general form: ṙ = r(1 − r2), θ̇ = ωb. Suitably
tailoring this to acknowledge inputs, leveraging periodic-averaging theory, and
including pertinent scaling factors, yields (7a)–(7b).

B. The LCL Filter

Let Udq , Edq , and VDQ denote the filter’s inverter-side,
capacitor, and grid-side voltages, respectively. Let Iidq and
Igdq denote the filter’s inverter-side and grid-side currents,
respectively. The filter dynamics are captured by

İidq =
(
ωT2(π2 )− ωb

Ri

Li
I
)
Iidq +

ωb

Li
(Udq − Edq), (8a)

Ėdq = ωT2(π2 )Edq +
ωb

C
(Iidq − Igdq), (8b)

İgdq =
(
ωT2(π2 )− ωb

Rg

Lg
I
)
Igdq

+
ωb

Lg
(Edq − T2(δ)VDQ), (8c)

where Li, Lg, and C denote the inverter-side inductance, grid-
side inductance, and capacitance of the LCL filter, respec-
tively; Ri and Rg denote the non-ideal series resistances asso-
ciated with the inverter- and grid-side inductors, respectively.

Rationale for choice of Lg, Li, and C: One well-established
approach for designing the LCL filter involves selecting a
resonant frequency that is between ten times the value of
the grid frequency (60 Hz in this case) and half the value
of the switching frequency (10 kHz in this case) [40]. For a
given resonant frequency (1.8 kHz in our design), picking the
inverter-side inductance to be equal to the grid-side inductance
ensures the smallest capacitive reactive power [41]. These
design considerations yield the choice of values for Lg, Li,
and C reported in Table I. The parasitic resistances follow
from the hardware prototype realization discussed in [16].

Remark 1 (Defining Active- and Reactive-power Outputs).
With the filter currents and voltages formally annotated, the
active- and reactive-power outputs measured at the filter
capacitors can be expressed as:

P = E>dqIgdq, Q = E>dqT2(−π2 )Igdq. (9)

C. The Current-reference Limiter

As depicted in Fig. 1, the current controller acts on a
reference command, denoted by I?idq , which is generated by
the voltage controller (to be described in detail later). As a
first step, the magnitude of this reference is saturated to the
inverter peak-current limit, Imax. In the literature, this has been
accomplished with the following saturation function [19], [42]:

min

(
1,

Imax

‖I?idq‖2

)
I?idq. (10)

For analytical convenience, we model the current-reference
limiting operation via the product ρI?idq , where ρ is given by:

ρ = −ε ln

(
exp

(−1

ε

)
+ exp

( −Imax

ε‖I?idq‖2

))
. (11)

The min(·, ·) function in (10) can be approximated by ρ for
small values of the saturation-function parameter, ε.

Rationale for choice of Imax and ε: The choice of Imax in
Table I follows [42], which has espoused limits in this range
for GFM inverters. The choice of ε ensures a close match of
the approximation ρ to the min(·, ·) function. (See Fig. 2.)
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ρ (11) for ε = 0.1, 0.2, 0.3, and 0.4.

D. The Voltage Controller

The voltage controller acts on the terminal-voltage refer-
ence, denoted by E?, which is generated by the dVOC module
and yields the current-control reference command, I?idq . Let
Φdq denote the state variable of the voltage controller. The
dynamics of the voltage controller are governed by

Φ̇dq = ωb(e1E
? − Edq) + ωbKb(ρ− 1)I?idq, (12a)

ρ̂I?idq =
KPv

ωb
Φ̇dq +KIvΦdq + Igdq −

ω

ωb
CT2(π2 )Edq, (12b)

where ρ̂ = 1 + KPvKb(ρ− 1), KPv and KIv denote the
voltage controller’s proportional and integrator gains, respec-
tively, and Kb denotes the integrator anti-windup gain. In
effect, (12a) and (12b) constitute a proportional-integral (PI)
control system with reference E?, controlled signal Edq , and
control input I?idq .The loop includes a feed-forward compensa-
tion term, Igdq− ω

ωb
CT2(π2 )Edq , and an integrator anti-windup

term Kb(ρ− 1)I?idq [42], [43].
Rationale for choice of KPv , KIv , and Kb: The bandwidth

of the current-control loop (which we denote by ωbw,i) is
typically one-tenth to one-fifth of the switching frequency,
and that of the voltage-control loop (which we denote by
ωbw,v) is multiple times slower for time-scale separation. The
PI gains for the controller are set as KPv = ωbw,vC and
KIv = 2KPvω

2
bw,v/ωbw,i to yield an approximately first-order

response [43]. A manual trial-and-error process is used to tune
the value of Kb.

E. Current Controller

Let Γdq denote the state variable corresponding to the
current controller, and U?dq denote the output of the current
controller. Note that U?dq generates the PWM reference signals
for the inverter. The dynamics of the current controller are

Γ̇dq = ωb(ρI?idq − Iidq), (13a)

U?dq =
KPi

ωb
Γ̇dq +KIiΓdq + Edq −

ω

ωb
LiT2(π2 )Iidq, (13b)

where KPi and KIi are the current-controller proportional
and integrator gains, respectively. In effect, (13a)–(13b) close
the loop around the inverter-side inductor current, Iidq , with
a PI loop that acts on a saturated version of the current
reference, ρI?idq .The feed-forward compensation term, Edq −
ω
ωb
LiT2(π2 )Iidq , in (13b) enhances disturbance rejection [43].
Rationale for choice of KPi and KIi: The PI gains are set as

KPi = ωbw,iLi and KIi = ωbw,iRi to yield an approximately
first-order response from reference to output [43].

F. The Three-phase Inverter

The three-phase line-neutral voltage at the inverter switch
terminals is captured by Uabc = Vdc

2 mabc, where mabc denotes
the pulse-width modulation (PWM) signals and Vdc is the per-
unitized dc-side voltage (see [43], pp. 115–126 for details).
With the control architecture sketched in Fig. 1, it emerges
that the averaged voltages at the inverter switched terminals
in the dq reference frame are given by: Udq = U?dq .

IV. THE PER-UNIT REDUCED-ORDER MODELS

In this section, we present the main results of this work,
namely: reduced-order models for GFM inverters with dVOC
acknowledging the current-reference limiter. The reduced-
order models are sketched in Figs. 3a and 3b, for inverters
with inductive and resistive interconnecting lines, respectively.
Compared to Fig. 1, in both cases, the dynamics of the current-
and voltage-control loops are abstracted, as are the dynamics
corresponding to the inverter-side inductance, Li, and filter
capacitance, C. The impact of the current-reference limiter is
preserved through an algebraic constraint in both cases.

We begin with a discussion on how to determine the dimen-
sion of the reduced-order models. Subsequently, we discuss
the derivation of the reduced-order models and consider the
special case without the current-reference limiter.

A. Determining the Order of the Reduced-order Models

The first step in model-order reduction is to identify fast and
slow states in the inverter dynamical model while acknowledg-
ing that the inverter could be interconnected to a network with
dominantly inductive or resistive lines. To aid this, in Fig. 4,
we plot eigenvalues and participation factors corresponding
to a linearized version of the inverter dynamical model for
parameters presented in Table I and inputs: S? = [2, 2]> pu,
VDQ = [1, 0]> pu. Two sets of results are plotted for inductive
and resistive interconnecting lines, and they are distinguished
based on the values of Rg and Lg utilized in the simulation.
For the case with inductive (resistive) lines, we set Lg (Rg)
equal to the sum of the grid-side inductance (resistance) and
the line inductance (resistance).

A careful examination of Fig. 4 reveals that a bandwidth
of (approximately) 260 rad s−1 is a reasonable cut-off to
separate slow and fast states for both inductive and resis-
tive interconnections. The region shaded in gray in Fig. 4
identifies eigenvalues whose real parts take values less than
−260 rad s−1, and should be considered as fast dynamics.
The choice of the cut-off bandwidth is determined based on
the locus of (the real-part of) eigenvalues most influenced by
fast states that are not as strongly dependent on the nature of
interconnecting lines. A careful examination of Fig. 4 suggests
that in this case, these fast states are Γdq , i.e., the states
associated with the current controller.3 The inferences reported
above hold for a wide range of inputs (S?, VDQ) and line
parameters (Rg, Lg).

3The real-part of eigenvalues most impacted by Γdq , emphasized in
Fig. 4(d), is −266.7 rad s−1 for both cases considered. We establish the
cut-off frequency to be 260 rad s−1 to go with a well-rounded number.
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Fig. 3: Reduced-order models for GFM inverters with a current-reference limiter and dVOC.

9 1.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 9 1.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0

Participation Factor (GFM inverter with inductive interconnecting lines)Participation Factor (GFM inverter with inductive interconnecting lines)

9 1.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 9 1.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0

Participation Factor (GFM inverter with resistive interconnecting lines)Participation Factor (GFM inverter with resistive interconnecting lines)

410×

1−

0

1

5.0

5.0−

Im
a
g
in
a
ry

p
a
rt

2000−4000−6000−8000−10000− 0

Real part

2000−4000−6000−8000−10000− 0

Real part

410×

0

1

5.0

5.0−

Im
a
g
in
a
ry

p
a
rt

410×

1−

0

1

5.0

5.0−

2000−4000−6000−8000−10000− 0

Real part

Im
a
g
in
a
ry

p
a
rt

�E(b) dqgI(c)

dqiI(f)dq(e) Φ

dq(d) Γ

dqE(g)

tbω−θ=δ(a)

200− 0

500−

500

0

300− 100−

200− 0

500−

500

0

300− 100−

200− 0

500−

500

0

300− 100−

− 200− 0

500−

500

0

300 100−

200− 0

500−

500

0

300− 100−
500

200− 0

500−
0

300− 100−

500
200− 0

500−
0

300− 100−

Fig. 4: Eigenvalues of the averaged full-order model’s Jacobian matrix, with each eigenvalue color coded according to the
participation factor of: (a) δ = θ − ωbt, (b) E?, (c) Igdq, (d) Γdq (e) Φdq, (f) Iidq, and (g) Edq . Elements of each dq
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B. Procedure Involved in Model-order Reduction

The results presented in this subsection are based on sin-
gular perturbation analysis [27]. We require the following
reasonable assumption for the results to hold:

Assumption 1. The GFM inverter’s angular frequency, ω,
satisfies the constraint ∣∣∣ω − ωb

ωb

∣∣∣ ≤ ε,

where ε is a dimensionless parameter.

For a nominal frequency, ωb = 60 Hz, and with the choice ε =
260−1 (motivated by the discussion on cut-off bandwidth in
Section IV-A), the above assumption implies that the reduced-
order models that follow are valid when the GFM inverter’s
frequency is within 59.77 Hz and 60.23 Hz.

The following steps are involved in model reduction:
1. The dynamics introduced in Section III are represented

compactly as a 12th-order set of differential equations by
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appropriately substituting algebraic equations.
2. The right- and left-hand sides of the differential equations

for fast states are multiplied by ε = 260−1. Resulting
equations are in the standard singular perturbation form:

ẋ = f (x, z, ε) , (14a)
εż = g (x, z, ε) , (14b)

where f (·, ·, ·) and g (·, ·, ·) are continuously differentiable
functions of their arguments, the elements of x are the slow-
varying states, and the elements of z are the fast-varying
states. From the discussion in Section IV-A, we note that
when inductive lines interconnect the GFM inverter to the
bus, x = [θ,E?, I>gdq]

> and z = [I>idq, E
>
dq,Φ

>
dq,Γ

>
dq]
>.

When resistive interconnecting lines are used, x = [θ,E?]>

and z = [I>gdq, I
>
idq, E

>
dq,Φ

>
dq,Γ

>
dq]
>.

3. The set of differential equations comprising (14b) are
replaced with algebraic counterparts. We employ a zero-
order approximation of the integral manifold for z as the
algebraic counterpart; this is derived by setting ε = 0
on the left-hand side of (14b), setting ω−ωb

ωb
= 0 in the

resulting set of equations (this follows from Assumption 1),
and solving for z as a function of x. The resulting set of
equations yield a 4th- (2nd-) order model for GFM inverters
with inductive (resistive) lines.

C. Reduced-order Models

Following the steps above, it emerges that the action of the
current-reference limiter is captured by solving for ρ in

0 = ρ+ ε ln

(
exp

(
− 1

ε

)
+ exp

(
− Imax

√
C2K2

b(ρ− 1)2 + ρ2

ε‖Ce2E? + Igdq‖2

))
.

(15)

Compared to (11), the above algebraic constraint is recogniz-
ably cumbersome; however, it captures the impact of current-
reference limiting in an analytically tractable fashion.

We summarize the differential and algebraic equations cor-
responding to the two sets of reduced-order models next.
Before doing so, we will find the below definitions useful:

Ti(ρ) =

 ρ
d(ρ) −CKb(ρ−1)

d(ρ)
CKb(ρ−1)

d(ρ)
ρ
d(ρ)

 , (16a)

Tv(ρ) =

−C2Kb(ρ−1)
d(ρ) 0
Cρ
d(ρ) 0

 , (16b)

Tiv(ρ) =

 (CLg−1)Kbρ(ρ−1)+Rgρ
2

dg(ρ)
0

CRgKbρ(ρ−1)−Lgρ
2

dg(ρ)
0

 , (16c)

Tgv(ρ) =

Kbρ(ρ−1)−Rgd(ρ)
dg(ρ)

−ng(ρ)
dg(ρ)

ng(ρ)
dg(ρ)

Kbρ(ρ−1)−Rgd(ρ)
dg(ρ)

 , (16d)

where, we introduce:

d(ρ) = C2K2
b(ρ− 1)2 + ρ2,

ng(ρ) = Lgρ
2 + CK2

b(ρ− 1)2(CLg − 1),

dg(ρ) = (CLg − 1)2K2
b(ρ− 1)2 + (CRg)2K2

b(ρ− 1)2

− 2KbRgρ(ρ− 1) + ρ2(R2
g + L2

g).

1) Inductive Interconnecting Lines: The dynamics of the
slow-varying states are given by

θ̇ = ωb +
ωbκ1
(E?)2

e>1 T2(ψ − π
2 )(S? − S), (17a)

Ė? =
ωbκ1
E?

e>2 T2(ψ − π
2 )(S? − S)

+ ωbκ2(E2
b − (E?)2)E?, (17b)

İgdq = ωb

(
T2(π2 )

(
I− 1

LgC

(
I− ρTi(ρ)

) )
− Rg

Lg
I
)
Igdq

+
ωb

Lg

(
ρ

C
T2(π2 )Tv(ρ)e1E

? − T2(δ)VDQ

)
, (17c)

where ρ is given by the solution of (15) and the active- and
reactive-power values, P,Q in S = [P,Q]> take the form:

P = I>gdq
( ρ
C
Ti(ρ)>T2(π2 )> − 1

C
T2(π2 )>

)
Igdq

+
ρ

C
e>1 Tv(ρ)>T2(π2 )>E?Igdq, (18a)

Q = I>gdq
( 1

C
I− ρ

C
Ti(ρ)>

)
Igdq

− ρ

C
e>1 Tv(ρ)>E?Igdq. (18b)

Algebraic equations for the fast-varying state variables are:

Iidq = ρ(Tv(ρ)e1E
? + Ti(ρ)Igdq), (19a)

Edq =
1

C
T2(π2 )

(
Iidq − Igdq

)
, (19b)

Φdq =
1

ρKIv
(ρ− 1)(KbKPv − 1)Iidq, (19c)

Γdq =
Ri

KIi
Iidq. (19d)

2) Resistive Interconnecting Lines: The dynamics of θ, E?

are the same as in (17a)–(17b); P,Q in S = [P, Q]> remain
defined as in (18a)–(18b); and ρ is still defined by the solution
of (15). However, Igdq , which is now a fast-varying state, is
defined algebraically via

Igdq = Tiv(ρ)e1E
? + Tgv(ρ)T2(δ)VDQ. (20)

The algebraic equations for the other fast-varying state vari-
ables are the same as (19a)–(19d).

Remark 2 (Structure of Reduced-order Models). The reduced-
order models for the slow-varying states in both cases con-
sidered above are self contained, in that they do not invoke
any fast-varying states. The dynamics are DAE models in each
case, with the algebraic component given by (15).

D. Special Case with Current-reference Limiter Ignored

The current-reference limiter can be ignored in the dynam-
ical model presented in Section IV-B by setting ρ = 1. The
collection of slow and fast states for the inductive and resistive
interconnecting lines remains the same as before.

For inductive interconnecting lines, the dynamics of θ and
E? are the same as (7a)–(7b), except, with the active- and
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reactive-power values, P,Q simplifying to: P = e>1 E
?Igdq ,

Q = −e>2 E
?Igdq . The dynamics of Igdq are given by

İgdq = ωb

(
T2(π2 )− Rg

Lg
I

)
Igdq +

ωb

Lg

(
e1E

? − T2(δ)VDQ
)
.

The algebraic equations for the fast-varying state variables
are:

Iidq = Ce2E
? + Igdq, Edq = e1E

?,

Φdq = [0 , 0]>, Γdq =
Ri

KIi
(Ce2E

? + Igdq).

From above, we see that the filter-capacitor voltage, Edq , is
regulated to the reference generated by the AHO model, e1E

?.
For resistive interconnecting lines, the dynamics of θ, E?

are the same as reported above for inductive interconnecting
lines, as are algebraic constraints for Iidq, Edq, Φdq, Γdq . The
algebraic constraint for Igdq can be recovered from (20) by
substituting Tiv(1) and Tgv(1).

V. NUMERICAL RESULTS

We consider a GFM inverter with dVOC interconnected to
an infinite bus via: i) an inductive line, and ii) a resistive
line. The active- and reactive-power references, and infinite-
bus voltage are varied over a 10 s time interval according to
Fig. 5. We include simulations from a switched version of
the model in Fig. 1, the averaged full-order model discussed
in Section III, and the reduced-order models discussed in
Section IV-B. Parameters in Table I are used in all simulations.

The computational effort required by the switched full-order
model, the averaged full-order model, and the reduced-order
model are 40.5 s, 14.3 s, and 1.9 s, respectively. Figure 6 shows
the root mean square error (RMSE) of the averaged full-order
model’s response and the reduced-order model’s response,
relative to the switched full-order model. Additionally, Figs. 7a
and 7b depict the output voltage and current of the switched
model, the averaged full-order model, and the reduced model.
Note that the reduced-order models capture the effects of the
current-reference limiter. Understandably, the reduced-order
models do not capture all higher-order transients, but they do
preserve all dominant transient behavior and return the same
steady-state values as the higher-order models. The numerical
results show that, although the RMSE associated with the
reduced-order models and the full-order model have identi-
cal orders of magnitude, our proposed reduced-order models
require an order-of-magnitude less computational effort.

VI. CONCLUDING REMARKS & FUTURE WORK

This work outlined reduced-order models for grid-forming
inverters realized with dispatchable Virtual Oscillator Control.
Compared to previous efforts for model reduction, our pro-
posed models retain the effects of the current-reference limiter
in the model response. Simulation results indicate that the
proposed reduced-order models require an order-of-magnitude
less computational effort to produce results with the same
order-of-magnitude accuracy as the averaged full-order model.
Future work includes extending the results presented in this
paper to other types of GFM inverters.
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