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Abstract—The circuit dynamics of power networks are typi-
cally neglected in transient stability analysis of power systems.
While this approximation is justified in classical multi-machine
power systems, the circuit dynamics can compromise stability
of power systems dominated by grid-forming (GFM) power
converters. In this work, we show that the impact of circuit
dynamics can be mitigated by (i) augmenting GFM droop control
with derivative feedback, and (ii) leveraging derivative control
terms of dual-port GFM control that was recently proposed in
the literature. Moreover, we show that, contrary to conventional
wisdom, avoiding instability by slowing down the converter
dynamics (e.g., through virtual inertia) is not always possible
or may require unrealistic virtual inertia constants.

I. INTRODUCTION

Tomorrow’s electric power systems are envisioned to be
sustainable, resilient, and largely based on renewable genera-
tion and power electronics. Replacing conventional fuel-based
synchronous generators with converter-interfaced resources
results in significantly different power system dynamics and
challenges standard power system models, analysis methods,
and operating paradigms [1]. For instance, compared to syn-
chronous machines power electronic converters have limited
inherent energy storage and overload capability. On the other
hand, compared to the relatively slow physics of a synchronous
machines, the dynamic response of power electronic converter
are mainly prescribed by fast and flexible control.

Broadly speaking, control strategies for grid-connected
dc/ac voltage source converters (VSC) are typically catego-
rized into (i) grid-forming (GFM) strategies that impose a
well-defined ac voltage waveform (e.g., frequency and mag-
nitude) at the point of connection, and (ii) grid-following
(GFL) controls that can only operate if another device (e.g.,
synchronous generator) imposes a near nominal ac voltage
waveform (e.g., frequency and magnitude) at their point of in-
terconnection. In particular, GFL control is fragile under weak
grid coupling [2] and may fail due to voltage disturbances [3]
or in systems without sufficiently tight frequency control.

In contrast, power converters with GFM control are en-
visioned to be the cornerstone of future power systems [1],
[4], [5]. The prevalent approaches to GFM control are droop
control [6], [7], virtual synchronous machine control [8],
virtual oscillator control [9], [10], and dispatchable virtual os-
cillator control [11]. While the need for emulating synchronous
machines and their inertia has always been the subject of
debate [1], [4], recent results indicate that leveraging the fast
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frequency response capabilities of grid-forming converters of-
fers advantages over emulating the relatively slow synchronous
machine dynamics [12]–[14].

At the same time, it has been observed that the network cir-
cuit dynamics can compromise the stability of microgrids [15],
[16] and converter-dominated power systems [11], [17]. This
instability cannot be detected using quasi-steady-state network
models widely used in system-level stability analysis [11],
[15]–[17] and is commonly attributed to a lack of timescale
separation between the converter controls and network dynam-
ics [17]. In other words, according to conventional wisdom,
multimachine systems do not exhibit this phenomenon because
the machine voltage phase angles change slowly relative to the
settling time of the network circuit dynamics.

On the other hand, analytical stability conditions for droop
control and a reduced-order dynamic microgrid model [18]
and dispatchable virtual oscillator control and a dynamic π-
line model [11], [19] reveal low inductance, large droop gains,
and low resistance-reactance ratios as the main salient features
of power systems that exhibit instability due to interactions
between GFM controls and network circuit dynamics [11],
[18], [19]. However, the aforementioned works do not inves-
tigate compensating the network dynamics by slowing down
the GFM controls (e.g., inertia emulation) or similar means.

Conceptually, [15]–[17] aim to develop models that can be
used to detect instabilities induced by network circuit dynam-
ics. However, detailed network models may not scale to large
systems and detailed network data may not be available for
bulk systems. More importantly, while scalable high-fidelity
network modeling is interesting in its own right, this approach
does not improve the stability boundary related to network
circuit dynamics but merely quantifies it. Instead, this work
aims to compensate the destabilizing effect of network circuit
dynamics through device-level control and thereby justify the
use of low-complexity quasi-steady-state network models for
the vast majority of system-level analysis tasks.

To this end, this work first develops a small-signal model
that accounts for the dynamics of resistive-inductive networks
with homogenous converter controls and uniform resistance-
reactance ratio. Using this model, we first obtain analytic
stability conditions for droop control and virtual synchronous
machine control. The results show that slowing down the con-
verter voltage phase angle dynamics through inertia emulation
to increasing the timescale separation between the network
and converter dynamics may not be effective. Specifically,
contrary to conventional wisdom, increasing the timescale
separation through inertia emulation cannot always stabilize
the overall system or may require unrealistic virtual inertia
constants. Next, we investigate compensating the network
circuit dynamics by (i) augmenting droop control with a



realizable derivative droop [20], and (ii) leveraging a derivative
droop term inherent in dual-port GFM control [21], [22].
This approach significantly improves the stability boundary
for droop control with small low pass filter time constants
and dual-port GFM control of voltage source converters with
small internal energy storage. Finally, we propose and analyze
a combined frequency and angle droop control that leverages
proportional angle droop to improve the stability boundary for
arbitrary droop gains and virtual inertia constants.

Notation

Given an angle θ ∈ R we define the rotation

R(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, r(θ) :=

[
cos(θ)
sin(θ)

]
,

and the 90◦ rotation matrix j := R(π/2) that can be
interpreted as an embedding of the complex imaginary unit√
−1 into R2. Given a matrix A, AT denotes its transpose.

For column vectors x ∈ Rn and y ∈ Rm we use (x, y) =
[xT, yT]T ∈ Rn+m to denote a stacked vector. Moreover, In,
0n×m, and 1n×m denote the n×n identity matrix and n×m
matrices of zeros and ones. The cardinality of a set X ⊂ N is
denoted by |X |.

II. POWER SYSTEM MODEL

A. Network topology

We study the control of three-phase voltage source convert-
ers (VSCs) interconnected through a power network modeled
by resistive-inductive lines. All electrical quantities in the
network are assumed to be balanced. Each VSC imposes an
ac voltage at a bus of the power network. The power network
is modeled as a connected simple1 graph G = (N , E ,W),
where N is the set of nodes (i.e., buses) corresponding to the
voltage source converters, E ⊆ (N×N )\∪i∈N (i, i), with |E|,
is the set of edges corresponding to the transmission lines, and
W is a set of edge weights corresponding to the inverse line
inductance. The topology of the power network is modeled by
the oriented incidence matrix B ∈ {−1, 0, 1}|N |×|E|.

B. Network dynamics

The dynamics of the current across a transmission line
connecting the nodes (n, k) ∈ E are modeled by

ℓnk
d
dt ink = −(rnkI2 + jω0ℓnk)ink + vn − vk, (1)

where ink = (id,nk, iq,nk) ∈ R2, vn ∈ R2, and vk ∈ R2

denote the current across the line (n, k) ∈ E , voltage at the
bus l ∈ N , and voltage at bus k ∈ N in a dq-frame rotating
at the nominal frequency ω0 ∈ R>0. Moreover, ℓnk ∈ R>0

and rnk ∈ R>0 denote the line inductance and resistance. To
simplify the analysis, we assume that the resistance-reactance
ratio is identical throughout the network. This assumption is
typically justified for lines at the same voltage level.

1In other words, undirected and containing no self-loops or multiple edges.

Assumption 1 (Uniform resistance-inductance ratio) The
resistance-inductance ratio ρ r

l
= rnk

ℓnk
and resistance-

reactance ratio ρ r
x
= rnk

ω0ℓnk
are identical for all (n, k) ∈ E .

Moreover, we require the following definition of instantaneous
three-phase power.

Definition 1 (Branch power and bus power injection)
Given the bus voltage vn ∈ R2, we define the branch
power pnk := vTnink and bus power injection pn :=∑

k:(n,k)∈E pnk ∈ R.

The bus voltages are modeled in polar coordinates vn :=
Vnr(θn) with phase angle θn ∈ R and magnitude Vn ∈ R.
Selecting the phase angle differences θnk = θn − θk as
input, and linearizing pnk = vTnink and (1) at θn = θk and
Vn = Vk = V ⋆ results in

pnk(s) =
1

ℓnk

ω0V
⋆2

s2 + 2ρ r
l
s+ ω2

0 + ρ2r
l︸ ︷︷ ︸

=:gp,θ(s)

θnk(s). (2)

Considering Assumption 1 and Definition 1, the small-signal
dynamics of the overall power network are given by

p(s) = BWgp,θ(s)B
Tθ(s) = gp,θ(s)Lθ(s), (3)

where p := (p1, . . . , p|N |) ∈ R|N | and θ := (θ1, . . . , θ|N |) ∈
R|N | are the bus power injections and voltage phase angles,
W := diag{ℓ−1

neke
}|E|e=1 ∈ R|E|×|E| collects the inverse line

inductance, and L := BWBT ∈ R|N |×|N| is the Laplacian
matrix associated with the graph G.

C. Voltage source converter dynamics

Each three-phase VSC imposes an ac voltage with and
phase angle θn ∈ R (relative to a frame rotating at the
nominal frequency ω0) and magnitude Vn ∈ R at its point
of connection. For small-signal frequency stability analysis,
the ac voltage magnitude is typically assumed to be nominal
[23, Sec. 6]. Moreover, the VSC dynamics of each VSC
are modeled by a transfer function gvsc,n(s) from its power
injection pn to its frequency ωn. To simplify the analysis, we
assume that the dynamics of each VSC are identical up to
scaling by the VSC rating. This assumption is often made in
the analysis of multi-machine and multi-converter systems and,
amongst other properties, ensures load sharing in proportion
to the rating of each converter.

Assumption 2 (Homogeneous and stable control) Consider
a transfer function gω,p(s) that has all its zeroes and poles
in the open left half plane and relative degree greater than
or equal to minus one. Given the converter rating γn ∈ R>0,
gvsc,n(s) = γ−1

n gω,p(s) holds for all n ∈ N .

Based on this assumption, the VSC model is given by

θn(s) = −1

s
gω,p(s)

1

γn

(
pn(s) + δp,n(s)

)
+ δθ,n(s), (4)

where δp,n ∈ R denotes a load perturbation at the converter
buses. Moreover, δθ,n ∈ R denotes a constant disturbance



input accounting for the fact that the VSCs local angle
references are not identical (i.e., VSCs not have access to
a common clock or angle reference). Notably, gω,p(s) need
not be realizable, because grid-forming control of VSCs only
requires θl. Hence it suffices that 1

sgω,p(s) is realizable.

D. Power system frequency dynamics

Defining ω := (ω1, . . . , ω|N |) ∈ R|N |, δp :=
(δp,1, . . . , δp,|N |) ∈ R|N |, δθ := (δθ,1, . . . , δθ,|N |) ∈ R|N |,
and Γ := diag{γn}|N |

n=1 ∈ R|N |×|N|, the overall power system
frequency dynamics shown in Fig. 1 are obtained.

gω,p(s)Γ
−1 1

s

gp,θ(s)L

δp(s) ω(s)

p(s)

−

δθ(s)

θ(s)

Fig. 1. Power system dynamics with load perturbations δp, reference angle
offsets δθ , converter frequency ω, and voltage phase angle θ.

III. PRELIMINARY RESULTS

A. Diagonalization and stability

To simplify the analysis, we apply the same ideas as in [24]
to diagonalize the power system dynamics. Rescaling by the
matrix of converter ratings Γ and rearranging the block dia-
gram results in the equivalent power system dynamics shown
in Fig. 2. Moreover, we define the scaled Laplacian matrix
LΓ := Γ− 1

2LΓ− 1
2 ∈ RN×N and N := |N |. Notably, LΓ

can be decomposed into LΓ = MΛMT with an orthonormal
matrix M ∈ RN×N and diagonal matrix Λ = diag{λn}Nn=1 ∈
RN×N of eigenvalues λ1 = 0 ≤ λ2 ≤ . . . ≤ λN of
LΓ. Rescaling the power system dynamics by M results in
the equivalent diagonalized power system dynamics shown in
Fig. 3. Considering that MMT = IN and gω,p is stable by
Assumption 2, it directly follows that stability of the overall
power system is equivalent to stability of

gλ(s) :=
gω,p(s)

1 + λ
s gω,p(s)gp,θ(s)

(5)

for all λ ∈ {λ2, . . . , λN}. Moreover, because gω,p is stable and
minimum-phase, stability of gλ(s) for all λ ∈ {λ2, . . . , λN}
is equivalent to stability of gλN

(s) (i.e., gλ(s) with λ = λN ).

B. Synchronization

Next, we note that the transfer function from the reference
angle offset δ0 to the voltage phase angle θ is given by

gθ,δθ (s) := Γ− 1
2M diag

{
gω,p(s)

−1gλ(s)
}λN

λ=0
MTΓ

1
2 . (6)

By Assumption 2, gω,p(s)
−1 is asymptotically stable. Thus,

stability of gλN
(s) implies stability of gθ,δθ (s) and gω,δθ (s) :=

sgθ,δθ (s). The next result shows that constant angle offsets

Γ− 1
2 gω,p(s)IN Γ− 1

2

Γ− 1
2

s
sΓ

1
2

gω,p(s)
gp,θ(s)Γ

− 1
2 LΓ− 1

2

s

δp(s) ω(s)

θ(s)

−

δθ(s)

Fig. 2. Power system dynamics after rescaling by the converter rating Γ and
moving the disturbance input δθ .

MTΓ− 1
2 gω,p(s)MMT

Γ− 1
2M

Γ− 1
2 M
s

sMTΓ
1
2

gω,p(s)
gp,θ(s)

s Λ

δp(s) ω(s)

θ(s)

−

δθ(s)

Fig. 3. Closed-loop power system dynamics after diagonalization of the scaled
Laplacian matrix LΓ.

δθ ∈ RN do not affect the steady-state frequency and that
the phase angles θ ∈ RN synchronize for any constant
δθ ∈ RN . While this property is well established for standard
grid-forming controls that correspond to realizable transfer
functions gω,p, it needs to be revisited for the broader class of
controls considered in Assumption 2.

Lemma 1 (Frequency stability and angle synchronization)
Consider a controller gω,p such that Assumption 2 holds. It
holds that lims→0 gω,δθ (s) = 0N×N . Moreover, for any δ0 ∈
RN , it holds that lims→0 gθ,δθ (s)δ0 = span1N .

Proof: Consider a generic controller gω,p =
bd+1s

d+1+...+b0
adsd+...+a0

. It can be verified that

lim
s→0

gλ(s)

gω,p(s)
= lim

s→0

1

1 + λ
s gω,p(s)gp,θ(s)

= lim
s→0

1
λ
s

b0
a0

ω0V ⋆2

ω2
0+ρ2

r
l

.

Moreover, Assumption 2 implies that b0/a0 ∈ R>0

and it follows that lims→0 gω,p(s)
−1gλ(s) = 0 for all

λ > 0 and lims→0 gω,p(s)
−1gλ(s) = 1 if λ =

0. Next, using M = [M1, . . . ,MN ] it follows that
lims→0 gθ,δθ (s) = Γ− 1

2M1M
T
1 Γ

1
2 . Moreover, M1 =

(
∑

n∈N γn)
− 1

2Γ
1
2 1n (see e.g., [24]) and lims→0 gθ,δθ (s) =

(
∑

n∈N γn)
−11N×NΓ. Finally, using the same arguments, it

follows that lims→0 gω,δθ (s) = lims→0 sgθ,δθ (s) = 0N×N .

C. Spectrum of the scaled Laplacian LΓ

Using quasi-steady-state network models commonly con-
sidered in the literature2 and leveraging standard arguments
(see e.g., [24]), the fact that λ

s is positive real guarantees
stability for any λN and any strictly positive real converter
control gω,p(s). However, the dynamic network model (3)
results in the diagonalized network model λ

s gp,θ(s) that cannot

2In other words, using gp,θ(s) =
V ⋆2ω0ℓ

2
0

ω2
0ℓ

2
0+r20

.



be positive real because the relative degree of gp,θ(s) exceeds
one [25]. Broadly speaking, λN can be interpreted as the
maximum gain of the VSC’s interactions through the network
and significantly impacts stability.

To clarify how λN scales with the network inductances ℓnk
and converter ratings γn, we define the weighted node degree
dn :=

∑
k:(n,k)∈E

1
γnℓnk

and maximum local ratio of ratings
σn := maxk:(n,k)∈E

γn

γk
.

Lemma 2 (Laplacian spectrum) The largest eigenvalue λN

of the scaled Laplacian LΓ is bounded by

max
n∈N

dn ≤ λN ≤ max
n∈N

(1 +
√
σn) dn.

Proof: By construction of LΓ it holds for all n ∈ N that
(LΓ)n,n =

∑
k:(n,k)∈E γ

−1
n ℓ−1

nk . Moreover, for all n ̸= k, it

holds that (LΓ)n,k = −γ
− 1

2
n γ

− 1
2

k ℓ−1
nk . Noting that γk ≥ 1

σn
γn

and applying Gershgorin’s circle theorem results in

λN ≤ max
n∈N

∑
k:(n,k)∈E

1

γnℓnk
+

∑
k:(n,k)∈E

1√
γkγnℓnk

, (7a)

λN ≤ max
n∈N

∑
k:(n,k)∈E

1

γnℓnk
+
√
σn

∑
k:(n,k)∈E

1

γnℓnk
. (7b)

Moreover, using the Rayleigh quotient it follows that

λN = max∥χ∥=1 χ
TLΓχ ≤

∑
k:(n,k)∈E

γ−1
n ℓ−1

nk . (8)

The lemma direct follows by definition of dn.
In other words, the upper and lower bound on λN increase
as the rating of the converter with maximum weighted node
degree dmax := maxn∈N dn decreases. Moreover, the upper
bound on λN increases if the maximum ratio σmax :=
maxn∈N σn of ratings increases (i.e., if neighboring converters
have significantly different ratings). Finally, both the upper
and lower bound on λN scale with the inverse inductance,
i.e., decreasing the inductance between the converter with
maximum weighted node degree and its neighbors increases
dmax and λN .

IV. STABILITY CONDITIONS WITHOUT COMPENSATION OF
NETWORK CIRCUIT DYNAMICS

We will first investigate stability of gλN
(s) for standard

droop control and virtual synchronous machine control without
compensation of network circuit dynamics.

A. Droop control and virtual synchronous machines

The most prevalent grid-forming control is so-called droop
control [6], [7]. Droop control is based on the assumption that
the internal dynamics of the VSC can be neglected. In this
case, the VSC frequency is given by the controller

gdr(s) =
mp

Ts+ 1
. (9)

In other words, letting gω,p(s) = gpd(s), the VSC model (4)
becomes

θn(s) = −
(
1

s

mp

Ts+ 1

)
pn(s) + δp,n(s)

γn
+ δθ,n(s).

Moreover, changing coordinates, virtual synchronous machine
(VSM) control [8] with virtual inertia M ∈ R>0 and virtual
damping D ∈ R>0 in proportion to the VSM rating is
equivalent to (9) with mp = 1/D and T = M/D (see [26]).

Remark 1 (Frequency droop gain) In the context of power
systems, the droop gain mp is typically prescribed by system
operators, aggregators, markets, or grid codes to meet system-
level control objectives. Therefore, it is not a degree of freedom
that can be tuned to ensure stability of the system.

The next result provides sufficient conditions for stability of
the overall power system with converters using droop control
or virtual synchronous machine control.

Theorem 1 (Stability of droop control) Consider gω,p(s) =
gdr(s). Then, gλN

(s) is asymptotically stable if one of the
following holds

(i) T = 0 and for all n ∈ N it holds that

(1 +
√
σn)dnmpV

⋆2 < 2ω2
0

(
ρ r

x
+ ρ3r

x

)
,

(ii) T ≥ 0, ρ r
x
< 1, and for all n ∈ N it holds that

(1 +
√
σn)dnmpV

⋆2 < ω2
0

(
ρ r

x
+ ρ3r

x

)
.

Proof: For T = 0 the Hurwitz criterion gλN
(s) guarantees

asymptotic stability of gλN
(s) if and only if 2ρ r

l
∈ R>0,

λNmpV
⋆2ω0 ∈ R>0, ω2

0 + ρ2r
l
+ λNmpV

⋆2ω0 ∈ R>0, and
2ρ r

l
(ω2

0 + ρ2r
l
) > λNmpV

⋆2ω0. Then, the first statement
directly follows from Lemma 2. Moreover, gλN

(s) is asymp-
totically stable for T ∈ R>0 if and only if 2Tρ r

l
+ 1 > 0,

λmpV
⋆2ω0 ∈ R>0, and

4ρ2r
l

(
1

2
ρ−1

r
l
(ω2

0 + ρ2r
l
)2 − λNmpV

⋆2ω0

)
T 2+

4ρ r
l

(
ρ r

l
(ω2

0 + ρ2r
l
)− λNmpV

⋆2ω0

)
T+

2ρ r
l
(ω2

0 + ρ2r
l
)− λNmpV

⋆2ω0 > 0.

(10)

Next, if ω0ℓ0
r0

> 1 and r0
ω0

(ω2
0 + ρ2r

l
) > mp(1 +

√
σn)dnV

⋆2,
it follows that 1

2ρ
−1
r
l
(ω2

0 + ρ2r
l
)2 > 2ρ r

l
(ω2

0 + ρ2r
l
) > ρ r

l
(ω2

0 +

ρ2r
l
) > λNmpω0V

⋆2, i.e., (10) holds for any T ∈ R>0 and
the second statement follows from Lemma 2.
Loosely speaking the stability conditions for droop control
without low-pass filter (i.e., T = 0) highlight that increasing
the droop gain mp, increasing the voltage magnitude V ⋆,
decreasing the resistance-inductance ratio ρ r

l
, and increasing

dn or σn for the converter n ∈ N with maximum (1+
√
σn)dn

will result in instability. Moreover, we recall that dn increases
as the line length and converter rating decrease, and

√
σn

increases as the difference between converter ratings increases.
The second statement highlights that stability is ensured

for all T ∈ R≥0 if the resistance-reactance ratio ρ r
x

is
small enough and (1 +

√
σn)dn is small enough for all

converters n ∈ N . This is typically the case in high-
voltage transmission systems with resistance-reactance ratio
ρ r

x
≪ 1, long transmission lines, and transformers that add



significant impedance to the lines, i.e., approximately result
in relatively large values of ℓnk and small values for dn.
However, considering Lemma 2, the results also highlight that
dn may significantly increase and result in instability in future
transmission systems that may contain many devices with low
rating connected through short lines (i.e., within a wind farm).

Remark 2 (Decentralized & centralized stability condi-
tions) The stability conditions developed throughout this work
can be verified in a decentralized fashion if every converter
n ∈ N has access to ℓnk and γk for all k with (n, k) ∈ E . On
the other hand, if the network data is available to a centralized
coordinator it suffices to check the stability conditions for the
converter n ∈ N with maximum (1 + σn)dn.

Conventional wisdom suggests that inertia emulation may
be used to slow down the dynamics of the phase angle θ ∈
Rn relative to the network dynamics (3) and thereby enforce
the timescale separation of classical multi-machine systems.
However, the next result shows that this is may not be the
case. In particular, if droop control with no inertia emulation
is not stable (i.e., the conditions for T = 0 do not hold) and
the resistance-reactance ratio ρ r

x
is large, then no amount of

virtual inertia will stabilize the system.

Theorem 2 (Instability of droop control) Consider
gω,p(s) = gdr(s). Then, gλN

(s) is not asymptotically stable if
there exists n ∈ N such that

mpdnV
⋆2 > 2ω2

0

(
ρ r

x
+ ρ3r

x

)
and either (i) T = 0 or (ii) T ≥ 0 and ρ r

x
>
√

1
3 .

Proof: Following the same arguments as in the proof of
Theorem 1, asymptotic stability of gλN

(s) with T = 0 requires
ρ r

l
(ω2

0 + ρ2r
l
) > 1

2λNmpV
⋆2ω0. However, by Lemma 2 it

holds that maxn∈N dn ≤ λN and, under the hypothesis of
this Theorem, it holds that ρ r

l
(ω2

0 + ρ2r
l
) < 1

2λNmpV
⋆2ω0.

Moreover, if ρ−1
r
x

<
√
3 and ρ r

x
(ω2

0 + ρ2r
l
) < 1

2mpdnV
⋆2

for any n ∈ N , then 1
2ρ

−1
r
l
(ω2

0 + ρ2r
l
)2 < 2ρ r

l
(ω2

0 + ρ2r
l
) <

dnmpV
⋆2 ω0

ℓ0
< λNmpV

⋆2ω0. This also implies that ρ r
l
(ω2

0 +

ρ2r
l
) < λNmpV

⋆2ω0 and (10) cannot hold for any T ≥ 0.
The previous two results cover two limit cases of systems

with droop controlled converters that are stable for any time
constant T ≥ 0 (Theorem 1.ii) or unstable for any time
constant T ≥ 0 (Theorem 2.ii). The corresponding regions
in the parameter space for a system of two converters with
equal rating are illustrated in Fig. 5.

The next result provides a necessary condition that illus-
trates that the filter time constant T ≥ 0 (i.e., virtual inertia
constant) required to stabilize the system in the remaining
cases may be excessive. In particular, large time constants
T ≥ 0 are problematic from a practical point of view because
they can typically only be realized by a VSC with significant
energy storage and peak power capabilities [5].

0 0.5 1 1.5 2
0

0.5
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1.5
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stable for
all T ≥ 0

stable for T = 0

unstable
for T = 0

unstable
for all
T ≥ 0

T → ∞ necessary

mpdn
V ⋆2

ω2
0

ρ
r x

Fig. 4. Regions in the parameter space corresponding to Theorem 1 (stability),
Theorem 2 (instability), and Lemma 3 (lower bound on T ). Parameters for a
two bus medium voltage system (f0 = 60 Hz, V ⋆ = 4.4 kV, γ1 = γ2 =
1 MW, mp = 5%) with 5 km line (⋄) and 5 km line including two 0.16 pu
transformers (◦). Parameters for a two bus high voltage system (f0 = 50 Hz,
V ⋆ = 320 kV, γ1 = γ2 = 1 GW, mp = 5%) with 100 km line (□) and
100 km line including two 0.16 pu transformers (D).
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Fig. 5. Regions in the parameter space corresponding to Theorem 1 (stability)
and Theorem 2 (instability). Parameters for a two bus low voltage system
(f0 = 60 Hz, V ⋆ = 400 V, γ1 = γ2 = 20 kW, mp = 1%) with 35 m
line (+) and 35 m line including 0.1 pu coupling inductance (×).

Lemma 3 (Lower bound on T ) Consider gω,p(s) = gdr(s),

ρ r
x
≤
√

1
3 , and λN ∈ R such that
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0(ρ

− 1
2

r
x

+ ρ
1
2
r
x
)2 ≥ λNmpV

⋆2 > 2ω2
0(ρ r

x
+ ρ3r

x
).



Then, for any stabilizing T it holds that T > Tmin with

T 2
min > − r20

4ℓ0

2ω2
0(ρ r

x
+ ρ3r

x
)− λNmpV

⋆2

1
2ω

2
0(ρ

− 1
2

r
x

+ ρ
1
2
r
x
)2 − λNmpV ⋆2

> 0

and Tmin → ∞ as λNmpV
⋆2 → 1

2ω
2
0(ρ
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2

r
x

+ ρ
1
2
r
x
)2.

Proof: If ρ−1
r
x

≥
√
3, then 2ρ r

l
(ω2

0+ρ2r
l
) > 1

2ρ r
l

(ω2
0+ρ2r

l
)2

and under the hypothesis of the Theorem, 2ρ r
l
(ω2

0 + ρ2r
l
) −

λNmpV
⋆2ω0 < 0, ρ r

l
(ω2

0 + ρ2r
l
) − λNmpV

⋆2ω0 < 0, and
1

2ρ r
l

(ω2
0 + ρ2r

l
) − λNmpV

⋆2ω0 ≥ 0. It directly follows that

T 2 > T 2
min is a necessary condition for (10), i.e., necessary

for asymptotic stability.
Finally, the equivalence of droop control (9) and the swing

equation model can be leveraged to interpret the results of this
section in the context of classical multi-machine systems.

Remark 3 (Multi-machine systems) The results of this sec-
tion suggest that the use of quasi-steady-state network models
in transient stability analysis of multi-machine systems is
difficult to justify by the timescale separation between the
network dynamics and machine rotor dynamics (i.e., large
machine inertia) but can instead be justified by the large
transformer and stator impedance of synchronous machines
(i.e., large ℓnk resulting in small weighted node degrees dn).

B. Comparison with prior work

Broadly speaking, the conditions of Theorem 1 are in
line with small-signal stability conditions obtained for droop
control in conjunction with a reduced-order dynamic network
model in [18] and the conditions for almost global stability of
dVOC3 with the line model (1) developed in [11]. However,
[27] analyzes the nonlinear dVOC dynamics at operating
points with non-zero power flow which naturally results in
more conservative results than the small signal analysis in this
work. On the other hand, the stability conditions in [18] are
formulated for each pair of converters (n, k) ∈ E . For brevity
of the presentation we restrict our attention to small-signal
frequency stability of a system of two converters. In this case,
in the notation of this manuscript, the stability conditions of
[18] for frequency stability for all T ∈ R≥0 reduce to

mp

(
1

γ1ℓ12
+

1

γ2ℓ12

)
V ⋆2 ≤ ω2

0(ρ
3
r
x
+ 2ω0ρ r

x
+ ρ x

r
). (11)

Moreover, 1
γ1ℓ12

+ 1
γ2ℓ12

= (1 + σn)dn for n ∈ {1, 2} and
ω2
0(ρ

3
r
x
+ 2ω0ρ r

x
+ ρ x

r
) > 2ω2

0(ρ r
x
+ ρ3r

x
) holds for ρ r

x
< 1

and ω0 ≥ 0. Thus, a sufficient condition for (11) is that

(1 + σn)dnmpV
⋆2 ≤ 2ω2

0(ρ r
x
+ ρ3r

x
) (12)

holds for n ∈ {1, 2}. While (12) is less conservative than
Theorem 1.ii, the dynamic reduced-order model used to derive
(12) typically overapproximates the stable region of the full-
order model considered in this work (see [16, Fig.2]).

3The dVOC frequency dynamics coincide with droop control gdr(s) with
T = 0 if the network is purely inductive and all voltage magnitudes are at
their nominal value [27].

V. COMPENSATION OF NETWORK CIRCUIT DYNAMICS

In this section, we show that the destabilizing effect of
network circuit dynamics can be mitigated by augmenting
GFM droop control with derivative droop and by leveraging
derivative control terms of dual-port GFM control [21], [22].

A. Proportional-derivative droop and dual-port GFM control

We investigate a class of proportional-derivative (PD) droop
control that can be used to compensate the impact of the
network dynamics (1). To this end, we consider the controller

gpd(s) =
mds+mp

Ts+ 1
, (13)

i.e., the VSC model (4) with gω,p(s) = gpd(s) becomes

θn(s) = −
(
1

s

mp +mds

Ts+ 1

)
pn(s) + δp,n(s)

γn
+ δθ,n(s).

This control is obtained by adding a realizable derivative
feedback with gain md ∈ R>0 to the frequency droop control
(9). Alternatively, the derivative droop term in (13) can be
understood as proportional feedback from a low-pass filtered
power measurement to the voltage phase angle reference [20].
While the frequency droop gain mp ∈ R>0 is generally
not a parameter that can be selected to ensure stability (see
Remark 1), the derivative gain md ∈ R>0 is a degree of
freedom that can be leveraged to ensure small-signal stability.

Moreover, droop control models the VSC as a controllable
ac voltage source and neglects the dynamics of the VSC [5]. In
contrast, dual-port GFM control [21], [22] explicitly leverages
the VSC’s dc-link dynamics modeled by

gdc,n(s) = − 1

Cdc,nv⋆dc,ns+Kdc,n
(14)

for each VSC n ∈ N . Moreover, v⋆dc,n is the nominal dc-link
voltage, Cdc,n is the dc-link capacitance, and, for brevity of the
presentation, we assume that the dc source interfaced by the
VSC implements a proportional dc-link voltage control with
gain Kdc,n (see e.g., [21], [22] for further details). Specifically,
dual-port GFM control maps the dc-link voltage vdc,n to the
VSC frequency ωn using the controller [21], [22]

ωn(s) = Kω,n +Kθ,ns︸ ︷︷ ︸
=:gdp-gfm,n(s)

vdc,n(s). (15)

Notably, while gdp-gfm,n(s) is not realizable, the phase angle
dynamics θn = 1

sgdp-gfm,n(s)vdc,n required for VSC control
are realizable. The following assumption ensures that Assump-
tion 2 holds for gpd(s) = gdp-gfm,n(s)gdc,n(s) and all n ∈ N .

Assumption 3 (Proportionality to rating) Given mp ∈
R∈R>0

, T ∈ R∈R>0
, md ∈ R≥0, and the converter rating

γn ∈ R∈R>0
for each bus n ∈ N , it holds that mp = γn

Kω,n

Kdc,n
,

md = γn
Kθ,n

Kdc,n
, and T =

Cdc,nv
⋆
dc,n

Kdc,n
.

The next result establishes that, for any weighted node degrees
dn and any maximum local ratio of converter ratings σn, there
exists a large enough derivative gain md ∈ R>0 and small



enough time constant T ∈ R>0 such that the system with PD
droop control or dual-port GFM control is stable.

Theorem 3 (Stability of PD droop control) Consider
gω,p(s) = gpd(s) and md ∈ R>0 such that

(1 +
√
σn)dnV

⋆2
(

1
2mp − ω0mdρ r

x

)
<ω2

0

(
ρ r

x
+ρ3r

x

)
for all n ∈ N . Then, there exists Tmax ∈ R>0 such that
gλN

(s) is asymptotically stable for all 0 ≤ T < Tmax.

Proof: Using the same arguments as in the proof of
Theorem 1 it follows that gλN

(s) is asymptotically stable if
and only if

4ρ2r
l

((
ω2
0 + ρ2r

l
+ ξd

2ρ r
l

− ξd
4ρ2r

l

)
(ω2

0 + ρ2r
l
+ ξd)− ξp

)
T 2

+4ρ r
l

(
ρ r

l
(ω2

0 + ρ2r
l
+ ξd)− ξp

)
T

+2ρ r
l
(ω2

0 + ρ2r
l
+ ξd)− ξp > 0

holds for ξp = λNmpV
⋆2ω0 and ξd = λNmdV

⋆2ω0.
By Lemma 2, the hypothesis of the Theorem implies that
2ρ r

l
(ω2

0 +ρ2r
l
+ ξd) > ξp and the Theorem directly follows.

This result significantly improves upon Theorem 1. In
particular, in practice, the time constant T ∈ R>0 of droop
control with low-pass filter is often small and used to filter
switching harmonics. Likewise, the time constant T ∈ R>0 of
dual-port GFM control is proportional to the size of the dc-
link capacitor (see Assumption 3) that is typically small. Thus,
while Theorem 3 does not provide any explicit bounds on
T ∈ R>0, the conditions of Theorem 3 are realistic in the sense
that they show that stability can be achieved for small time
constants T ∈ R>0 as opposed to very large time constants
T ∈ R>0 for standard droop control (see e.g., Lemma 3).
Obtaining explicit bounds that related md ∈ R>0, T ∈ R>0,
dn, and σn is seen as an interesting topic for future work.

The following corollary directly follows from Theorem 3
and Lemma 2, and highlights that for md ≥ mp

2ω0
ρ−1

r
x

and T =
0, the system is stable independently of the weighted node
degrees dn and maximum local ratio of converter ratings σn.

Corollary 1 (Stability for any network) Consider gω,p(s) =
gpd(s) with T = 0 and md ≥ mp

2ω0
ρ−1

r
x

. Then, gλN
(s) is

asymptotically stable.

This result shows that PD droop (13) control with T = 0
significantly improves upon the stability region of regular
droop control (9) (both with (i.e., T ∈ R>0) and without (i.e.
T = 0) inertia emulation). However, for systems with small
resistance-reactance ratio ρ r

x
, using md =

mp

2ω0
ρ−1

r
x

may result
in prohibitively large derivative gains md. Generally, stability
can typically be guaranteed for such systems without derivative
gain (see Theorem 1). However, one may envision systems,
such as transmission connected plants containing many devices
with low power rating connected through short lines, for which
Theorem 1 cannot be used to certify stability and Corollary 1
results in prohibitively large gains md. Investigating such
scenarios is seen as an interesting topic for future research.

B. Frequency and angle droop

Finally, we consider the frequency and angle droop control

gfa(s) =
mp

Ts+ 1
+mds, (16)

that results in the voltage phase angle dynamics

θn(s) = −
(
1

s

mp

Ts+ 1
+md

)
pn(s) + δp,n(s)

γn
+ δθ,n(s).

In other words, a direct feedback from active power to voltage
phase angle without low-pass filter is used. For this control,
the derivative gain md ∈ R>0 is again a degree of freedom
that can be leveraged to ensure small-signal stability while the
frequency droop gain mp is typically prescribed by system-
level objectives (see Remark 1).

Remark 4 (Virtual impedance) The transfer function (16)
also arises as the linearization of standard droop control
(9) in combination with a purely inductive virtual impedance
[28]. We note that virtual impedance does not emulate the
dynamics (1) of an impedance but only its steady-state re-
sponse. Moreover, virtual impedance inevitably impacts the
steady-state voltage magnitude and frequency. In contrast, (16)
compensates network dynamics without impact on the steady-
state of the power system.

The next result shows that for any T ∈ R≥0, mp ∈ R>0,
λN ∈ R>0, and ρ r

x
∈ R>0, there always exists a large enough

derivative gain md ∈ R>0 such that the power system is stable.
Moreover, if the reactance-resistance ratio ρ r

x
is sufficiently

small (i.e., in high voltage or medium voltage systems), then
there exists a derivative gain md ∈ R>0 that renders the power
system stable for all T ∈ R≥0.

Theorem 4 (Stability of frequency and angle droop con-
trol) Consider gω,p(s) = gfa(s). Then, for any T ∈ R≥0 there
exists md ∈ R>0 such that gλN

(s) is asymptotically stable.
Moreover, if ρ r

x
< 1, then gλN

(s) is asymptotically stable for
all T ∈ R≥0 if, for all n ∈ N , it holds that

(1 +
√
σn)dnV

⋆2
(
mp − ω0mdρ r

x

)
<ω2

0

(
ρ r

x
+ρ3r
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)
.

Proof: Using the same arguments as in the proof of
Theorem 1, ξp = λNmpV

⋆2ω0, and ξd = λNmdV
⋆2ω0, it

follows that gλN
(s) is asymptotically stable if and only if
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l
+ ξd)− ξp > 0.

(17)

It directly follows that one can always find a large enough
md ∈ R>0 such that (17) holds for any T ∈ R>0. Moreover,
if ρ r

x
< 1, then, under the hypothesis of the Theorem,

1
2ρ

−1
r
l
(ω2

0 + ρ2r
l
+ ξd)

2 − ξp > ρ r
l
(ω2

0 + ρ2r
l
+ ξd) − ξp > 0

for all ξp. Next, considering Lemma 2, the Theorem follows
because ρ r

l
(ω2

0 + ρ2r
l
+ ξd) > ξp under the hypothesis of the

Theorem.



The following simplified stability condition is a direct
consequence of Theorem 4.

Corollary 2 (Stability for any network with ρ r
x
< 1) Con-

sider gω,p(s) = gfa(s) and md >
mp

ω0
ρ−1

r
x

. Then, gλN
(s) is

asymptotically stable for all T ∈ R≥0 and any network with
ρ r

x
< 1.

Similarly to Corollary 1 for droop control with T = 0,
selecting md based on Corollary 2 may result in prohibitively
large derivative control gains in systems with small resistance-
reactance ratios ρ r

x
. The reader is referred to the discussion

below Corollary 1 for further details.

VI. CONCLUSION

This work analyzed the impact of network circuit dynamics
on grid-forming control and highlighted that the network
circuit dynamics cannot be neglected in transient stability
analysis of converter-dominated power systems. Contrary to
conventional wisdom, the analytic stability conditions devel-
oped in this work show that instability induced by network
circuit dynamics cannot always be avoided by slowing down
the voltage phase angle dynamics of grid-forming converters
or may require unrealistic virtual inertia constants. Moreover,
this work proposed to augment grid-forming droop control
with derivative feedback to compensate the network dynamics
and provides analytical stability conditions for proportional-
derivative droop control and dual-port grid-forming control
that account for network circuit dynamics. The results indi-
cate that derivative droop terms are a promising solution to
compensate network circuit dynamics in grid-forming control.
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